Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(19): 13926-13933, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728955

RESUMO

Four undescribed cytochalasins (1-4) were isolated from the endophytic fungus Boeremia exigua. Structurally, boerelasin A (1) represents the first example of a cytochalasin with a rare 5/5 bicyclic carbon core. Boerelasin B (2) possesses an unprecedented 5/6/5/6/8 pentacyclic ring system. Boerelasin C (3), a derivative from the common biosynthetic intermediate to 1, is a macrocyclic ring-opening cytochalasin, and boerelasin D (4) contains an uncommon six-carbon alkyl acid side chain. The structures were elucidated based on spectroscopic methods, electronic circular dichroism, spin-spin coupling constants, and calculated nuclear magnetic resonance with DP4+ analysis. These compounds exhibited significant cytotoxicity against the tumor cells.

2.
Molecules ; 28(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764440

RESUMO

Phytochemical investigation of the two Tabernaemontana species (Apocynaceae) T. peduncularis Wall. and T. divaricata (L.) R.Br. ex Roem. & Schult. indicated closely related biosynthetic pathways leading to lipophilic and hydrophilic alkaloids. In total, 18 specialized metabolites comprising indole-derived alkaloid aglycones, three oxindole-derived alkaloid glycosides, and two iridoid glucosides could be identified in the studied species. Among the alkaloids, the two Iboga-type alkaloids 3,7-coronaridine isoindolenine, coronaridine 3,4-iminium and a javaniside derivative bearing a glucuronic acid, named javanuronic acid, could be described by spectroscopic and spectrometric methods for the first time. A docking experiment using alpha-fold was performed to generate a protein model of the enzyme 7-deoxyloganetic acid glucosyl transferase. Performed bioassays exhibited a growth reduction of neonate Spodoptera littoralis larvae and reduced cell viability of HepG2 cells of the extracts containing Iboga alkaloids, whilst the javaniside derivatives containing hydrophilic fraction did not show any effects. These findings indicate a high flexibility in the formation of bioactive indole alkaloid aglycones by Tabernaemontana species and also evidence similar accumulation trends in both species as well as indicate that biosynthetic routes leading to oxindole alkaloids like javanisides are more widespread than reported. Furthermore, the incorporation of the three novel compounds into potential biosynthetic pathways is discussed.


Assuntos
Tabernaemontana , Humanos , Recém-Nascido , Oxindóis , Glucuronídeos , Vias Biossintéticas
3.
Fitoterapia ; 169: 105588, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336417

RESUMO

Seventeen undescribed Aspidosperma-type alkaloids (ASPs), along with nine known ones were isolated from the leaves of Tabernaemontana bovina. Taberbovermines A and B were assigned to tabersonine-type with a contracted A- and E-ring, respectively. Taberbovermine C was attributed to tabersonine without D ring. These structures of the ASPs were established on the basis of comprehensive spectroscopic data, electronic circular dichroism calculations and X-ray diffraction. The summaries of structure-activity relationship of tabersonine class were discussed based on hepatoma cells screening.


Assuntos
Alcaloides , Aspidosperma , Tabernaemontana , Tabernaemontana/química , Aspidosperma/química , Estrutura Molecular , Alcaloides/química , Alcaloides Indólicos/química , Folhas de Planta/química
4.
Sci Rep ; 13(1): 1912, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732590

RESUMO

The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.


Assuntos
Celulase , Trichoderma , Celulase/metabolismo , Metabolismo Secundário , Trichoderma/metabolismo , Desenvolvimento Sexual , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Nat Prod Res ; 37(1): 85-92, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311632

RESUMO

Four new leucine-derived cytochalasans, possessing a 5,6,5,8-ring (1) and a 5,6,11-ring core (2-4), were isolated from a cultivated endophytic fungus Xylaria sp. strain WH2D4 (Xylariaceae). This fungus was isolated from leaves of the neotropical tree species Palicourea elata (Sw.) Borhidi (Rubiaceae) collected in Costa Rica. The chemical structures were determined by employing IR, MS as well as 1D- and 2D-NMR experiments. The stereochemistry at C-15 of compound 4 was determined by quantum calculations. The isolated compounds did not affect germination and growth of Trichoderma reesei and the opportunistic human fungal pathogen T. longibrachiatum.


Assuntos
Rubiaceae , Xylariales , Humanos , Costa Rica , Rubiaceae/química , Xylariales/química , Espectroscopia de Ressonância Magnética , Citocalasinas/química
6.
Bioorg Chem ; 130: 106239, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371820

RESUMO

Fifteen undescribed Stemona alkaloids, named as stemarines A-O (1-15), along with 25 known alkaloids (16-40), were isolated and identified from the roots of Stemona mairei (H.Lév.)K.Krause (Stemonaceae). Their structures were elucidated through the analysis of the NMR spectra, mass data, and computational chemistry. All the hitherto undescribed compounds possess a pyrrolo[1,2-α]azepine core structure but differ in important structural features, which reflects their nematocidal activities. Alkaloids 3-6 featured a carboxylic side chain and exhibited significant nematocidal activity against the nematode Caenorhabditis elegans. Transections of fresh roots combined with application of the Dragendorff' reagent on the tissue indicated accumulation of alkaloids mainly in the epidermis and the pith. These results suggest the key pharmacophore of these alkaloids lies in the aliphatic side chain of these compounds and its spatial distribution in the roots indicate protective effects against underground herbivores.


Assuntos
Alcaloides , Stemonaceae , Stemonaceae/química , Antinematódeos , Extratos Vegetais/química , Alcaloides/farmacologia , Alcaloides/química , Raízes de Plantas/química , Estrutura Molecular
7.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364108

RESUMO

There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a ß-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.


Assuntos
Produtos Biológicos , Rubiaceae , Rubiaceae/química , Norisoprenoides/análise , Sulfatos/análise , Escherichia coli , Folhas de Planta/química , Produtos Biológicos/análise , Enxofre/análise
8.
Molecules ; 27(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36014416

RESUMO

Comprehensive phytochemical examination from different perspectives using preparative and analytical chromatographic techniques combined with spectroscopic/spectrometric methods of the so-called "yellow twig" Nauclea orientalis (L.) L. (Rubiaceae) led to the identification of 13 tryptamine-derived (=monoterpene-indole) alkaloids. The identified alkaloids comprise strictosamide and four of its glucosidic derivatives, three oxindole derivatives, and five yellow-colored angustine-type aglycones. Qualitative and quantitative HPLC analyses showed the enrichment of strictosamide in all studied organs. Based on these results, we performed metabolomic analyses of monoterpene-indole alkaloids and made a 1H NMR in vitro monitoring of enzymatic deglucosylation of strictosamide. A comparison of the stability of strictosamide and its enantiomer vincoside lactam by theoretical calculations was also performed revealing a slightly higher stability of vincoside lactam. Additionally, we conducted two different anti-feedant assays of strictosamide using larvae of the polyphageous moth Spodoptera littoralis Boisduval. The obtained results indicate that generally two different biosynthetic pathways are most likely responsible for the overall alkaloid composition in this plant. Strictosamide is the key compound in the broader pathway and most likely the source of the identified angustine-type aglycones, which may contribute significantly to the yellow color of the wood. Its cross-organ accumulation makes it likely that strictosamide is not only important as a reservoir for the further biosynthesis, but also acts in the plants' defense strategy.


Assuntos
Alcaloides , Antineoplásicos , Rubiaceae , Alcaloides/química , Alcaloides Indólicos/química , Lactamas , Monoterpenos , Rubiaceae/química , Tailândia , Alcaloides de Vinca
9.
Phytochemistry ; 200: 113220, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35513135

RESUMO

Six undescribed isoquinoline alkaloids, named as cephaloliverines A-F, were isolated from the seeds of Cephalotaxus oliveri. They were identified by NMR and MS spectroscopic data analyses, combined with the time-dependent density functional theory ECD calculation for cephaloliverines A and B and also by X-ray crystal diffraction for cephaloliverine E. Biosynthetic considerations suggest that cephaloliverines A-D are homologous of cephalotaxine-, homoerythrina- and Erythrina-type alkaloids. The performed bioassay revealed no cytotoxic activity against cancer cells and no neuroprotective properties on HEI-OC-1 cells model.


Assuntos
Alcaloides , Cephalotaxus , Harringtoninas , Alcaloides/química , Alcaloides/farmacologia , Cephalotaxus/química , Harringtoninas/farmacologia , Mepesuccinato de Omacetaxina , Sementes
10.
Bioorg Chem ; 116: 105314, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500306

RESUMO

Continued interest in bioactive monoterpenoid indole alkaloids and the purpose to explore the artificial cultivation influence on the chemical composition in the same plant species, 8 undescribed Aspidosperma-type alkaloids including two unprecedented trimers, taberdivarines A-B (1-2), and six new dimers, taberdivarines CH (3-8), together with 9 known bisindoles were isolated from the leaves of Tabernaemontana divaricata 'Dwaft'. Notably, taberdivarines A and B were the first cases of Aspidosperma-Aspidosperma-Aspidosperma-type alkaloids with furan ring linkage patterns of the natural products. Their structures were elucidated by comprehensive spectroscopic analyse. Compounds 1-8 were screened for the cytotoxicity against three human cancer cell lines, SMMC-7721, HT-29 and A549. Among them, Compound 6 exhibited significant activity against three cell lines with IC50 values of 0.30, 0.75 and 3.41 µM, respectively (IC50 = 3.02, 0.14 and 2.23 µM for the positive control, vinorelbine). Compound 1, 3, 4, 6, 7 and 8 also expressed varying degrees of activity. The structure-activity relationships (SARs) of these alkaloids were discussed.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Folhas de Planta/química , Tabernaemontana/química , Alcaloides/química , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Org Chem ; 86(19): 13381-13387, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546728

RESUMO

Five dimeric Erythrina alkaloids, named erythrivarines J-N, were isolated from the barks of Erythrina variegata L. (Fabaceae). The erythrivarines J-L featured a 6/6/5/6/6/5/6/6/6 ring system and super conjugated double bond systems, causing intense color from blue to wine red, while erythrivarines M-N looked orange. The structures of the isolated compounds were elucidated by 1D and 2D NMR experiments combined with MS and confirmed by the X-ray crystal diffraction technique. The performed bioassay using HEI-OC-1 cells revealed neuroprotective properties of erythrivarine N against the hearing loss causing antibiotics, neomycin.


Assuntos
Alcaloides , Erythrina , Indolizinas , Fármacos Neuroprotetores , Alcaloides/farmacologia , Fármacos Neuroprotetores/farmacologia , Difração de Raios X
12.
Front Mol Biosci ; 8: 683671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395523

RESUMO

Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in Ardisia crenata (Primulaceae) and Psychotria punctata (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of A. crenata. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of A. crenata. In contrast, pavettamine was only detected in P. punctata and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in A. crenata leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.

13.
Plant Divers ; 43(3): 225-233, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34195507

RESUMO

The traditional medicinal plant, and endangered species Aristolochia delavayi (Aristolochiaceae) is an endemic species in China and occurs in the warm and dry areas along the Jinsha river. It is also a specific host of the larvae of Byasa daemonius, a vulnerable butterfly. In this study, 15 pairs of polymorphic microsatellite primers of A. delavayi were designed and screened based on the Simple Sequence Repeats (SSR) loci found by using the results of genome skimming. Based on these 15 SSR markers, the genetic diversity and structure of 193 individuals from ten natural populations were analyzed in detail. In comparison to other endemic and endangered plants in the region, the population of A. delavayi possess a relatively high genetic diversity (He = 0.550, I = 1.112). AMOVA analysis showed that 68.4% of the total genetic diversity was within populations and 31.6% of the variation occurred among populations. There was a significant genetic differentiation among natural populations of A. delavayi detectable, with low gene flow (Nm = 0.591). This might be attributed to geographical barriers and limited seed dispersal. To test the isolation by distance (IBD), we performed Mantel test, which showed a significant correlation between the geographic and genetic distances. In order to cope with the possible biases caused by IBD, we additionally performed Bayesian genetic cluster analyses and principal coordinate analysis (PCoA). The final cluster analysis revealed three groups with distinct geographical distribution. Habitat fragmentation and limited gene flow between these populations may be the main reasons for the current genetic structure. For conservation of this species, we suggest to divide its populations into three protection management units, with subsequent focus on the Yongsheng and Luquan populations which experienced a genetic bottleneck event in the past.

14.
Molecules ; 26(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670764

RESUMO

Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1-3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL-1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment.


Assuntos
Artocarpus/química , Flavonoides/farmacologia , Sequestradores de Radicais Livres/farmacologia , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Flavonoides/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Oxirredução , Estereoisomerismo
15.
Nat Prod Res ; 35(21): 3873-3879, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32252565

RESUMO

Phytochemical examination of Clausena lenis Drake (Rutaceae), collected in Thailand, led to the isolation of seven coumarins, four furoquinolines, two amides, and one flavonoid glycoside. Four of these compounds, one coumarine derivative named as gravelliferone A (3), two furoquinoline derivatives (kokusagenin A (8) and B (9)) and one amide, clausenalansamide H (13), are reported for the first time. Compound 3 was isolated from the root bark, compound 8 from the stem bark and compounds 9 and 13 from the leaves. The molecular structures of all isolated compounds were established by means of NMR experiments combined with mass spectrometry. Preliminary tests of the lipophilic stem bark extract against various human pathogenic bacteria strains revealed promising effects against Staphylococcus aureus ATCC 43300.


Assuntos
Clausena , Rutaceae , Cumarínicos/farmacologia , Humanos , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Folhas de Planta
16.
Org Lett ; 22(19): 7676-7680, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32955264

RESUMO

Meloyunnanines A-C, three alkaloids with an unprecedented skeleton, were isolated from fruits of Melodinus yunnanensis. The structures featuring a caged-6/6/5/6/5/5 ring system were elucidated by the analysis of comprehensive spectroscopic and X-ray data. Biosynthetically, meloyunnanines A-C were assigned to monoterpenoid quinoline alkaloids (MQAs), derived from monoterpenoid indole alkaloids through oxidation and rearrangement. These compounds together with three known Melodinus MQAs were evaluated for their neurotrophic activity and scandine N4-oxide exhibited significant effect.


Assuntos
Apocynaceae/química , Monoterpenos/farmacologia , Fatores de Crescimento Neural/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Frutas , Humanos , Estrutura Molecular , Monoterpenos/química , Monoterpenos/isolamento & purificação , Fatores de Crescimento Neural/química , Neuritos , Quinolinas/química , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação
17.
BMC Genet ; 21(1): 102, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919456

RESUMO

BACKGROUND: Amorphophallus albus P. Y. Liu & J. F. Chen (Araceae) is a plant species with extremely small populations (PSESP) and an important economic crop endemic to dry-hot valleys along the Jinsha River. In order to gain information for sustaining the development and conservation of A. albus, we studied the genetic diversity and population structure of this species using microsatellite markers (SSR). In this study, we analysed 364 individuals belonging to 24 populations, including four wild populations and three ex-situ cultivated populations, collected in the provinces Yunnan, Sichuan and Hubei. RESULTS: The population genetic analyses indicated that A. albus possesses moderate genetic diversity with the percentage of polymorphic loci (PPL) from 69.23 to 100%, an expected heterozygosity (He) of 0.504 and an average Shannon's Information Index (I) 0.912. Analysis of molecular variance (AMOVA) indicated that most of the variance (71%) resided within populations and the estimated gene flow (Nm) was 0.61. The results of UPGMA cluster tree, STRUCTURE analyses together with the Mantel test (R2 = 0.352, P < 0.01) indicated that geographically closely located populations are clustered together with some exceptions. CONCLUSIONS: Our results showed that A. albus still possesses moderate genetic variation in most of the studied populations, and for now, most cultivated populations were naturally distributed but still some reintroduction exists. For sustaining the present genetic variation, some protections measures are necessary for the wild populations and also for the cultivated ones with high genetic diversity.


Assuntos
Amorphophallus/genética , Variação Genética , Genética Populacional , China , Fluxo Gênico , Repetições de Microssatélites , Rios
18.
Phytochemistry ; 173: 112296, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32087436

RESUMO

The first phytochemical examination of extracts from leaves and stem bark of Palicourea luxurians (Rusby) Borhidi yielded two undescribed and one known alstrostine derivative together with the oxindole alkaloid javaniside as well as with 5α-carboxystrictosidine. Additionally, five iridoids and four secologanin derived isolation artifacts have been isolated. Lack of strictosidine and its follow-up metabolization products suggested that the Pictet-Spenglerase in P. luxurians does barely or not catalyze the formation of strictosidine. Against this background the biosynthesis of javaniside and 5α-carboxystrictosidine is discussed with regard to possible reaction mechanisms. Similarly, P. luxurians used an independent biosynthetic pathway to produce alstrostine type structures from secologanin and tryptamine in a 2:1 ratio. The structure of isoalstrostine A, which was isolated for the first time, allowed the refinement of a previously reported pathway to the alstrostine type carbon skeleton as well as to some follow-up metabolization products. In spite of various biosynthetic pathways incorporating secologanin to gain different types of tryptophan- and tryptamine-iridoid alkaloids, P. luxurians accumulates this compound as well a couple of further metabolized iridoids deriving from loganin and secologanin.


Assuntos
Alcaloides , Rubiaceae , Alcaloides de Triptamina e Secologanina , Glucosídeos Iridoides , Iridoides , Triptaminas , Triptofano , Alcaloides de Vinca
19.
Chin Herb Med ; 12(4): 452-455, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36120174

RESUMO

Objective: To isolate and identify the major bioactive components from the leaves of Lysiphyllum strychnifolium, an indigenous herb used in traditional Thai medicine for detoxification, longevity, and some other health related issues. Methods: Comparative HPLC analyses of the crude extracts from three provenances were carried out for an overview of characteristic compound profiles. Isolation of the major compounds was undertaken with chromatographic methods. Chemical structures were elucidated by NMR spectroscopic techniques and mass spectrometry. DPPH scavenging assay was carried out to determine the free radical scavenging activity of isolated compounds. Results: Yanangdaengin (3), a dihydrochalcone glucoside galloyl ester, has been isolated together with its corresponding dihydrochalcone glucoside trilobatin (2) as major compounds from the leaves of L. strychnifolium. Additionally, gallic acid (1) was co-chromatographically identified. Free radical scavenging activity of isolated compounds were determined. Compound 3 exhibited higher free radical scavenging activities in comparison to Trolox and quercetin. Conclusion: The isolated compounds could be used as chemical markers for quality assessment. The present work could promote the quality control and herbal medicinal product development of this plant.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31528353

RESUMO

BACKGROUND: Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS: Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS: We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...